**O.P.Code:** 18HS0830)

**R18** 

H.T.No.

## SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

## B.Tech I Year I Semester Supplementary Examinations June-2024 **MATHEMATICS – I**

(Common to All)

Time: 3 Hours

Max. Marks: 60

**PART-A** 

(Answer all the Questions  $5 \times 2 = 10$  Marks)

1 a Find Eigen values of the matrix CO<sub>1</sub> L2 2M

 $\begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ 

**b** State Lagrange's mean value theorem.

L1CO<sub>2</sub> 2M

CO<sub>3</sub> L2 2M

Evaluate  $\lim_{(x,y)\to(0,0)} \frac{xy}{(x^2+v^2)}$ 

2M

Test the convergence of the series  $\sum_{n=1}^{\infty} \frac{1}{n+3}$ 

CO<sub>5</sub> L12M

e Calculate  $a_0$ , if  $f(x) = x \sin x$  in  $(0, \pi)$ 

**PART-B** 

(Answer all Five Units  $5 \times 10 = 50$  Marks)

2

a Find the rank of a matrix  $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$ 

CO<sub>1</sub> L2

CO<sub>1</sub> L3 **5M** 

**5M** 

**b** Test for consistency the set of equations and solve them if consistent. 5x+3y+7z=4, 3x+26y+2z=9, 7x+2y+10z=5

a State Cayley-Hamilton theorem.

CO<sub>1</sub> CO<sub>1</sub>

L1 **2M** L3 8M.

**b** Show that the matrix  $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$  satisfies its characteristic equation.

UNIT-II

OR

OR

a Find the surface area generated by the revolution of an arc of (catenary)

L2 5M CO<sub>2</sub>

curve  $y = c \cdot \cosh \frac{x}{c}$  from x = 0 to x = c about the x - axis

**b** Find the volume of the reel-shaped solid formed by the revolution about the y- axis,  $y^2 = 4ax$  of the part of the parabola cut off by the latus-

CO<sub>2</sub> L2 **5M** 

rectum

Find the value of  $\Gamma\left(\frac{1}{2}\right)$ 

CO<sub>2</sub> L3 **5M** 

**b** Verify lagrange's mean value theorem for  $f(x) = x^3 - x^2 - 5x + 3$  in [0,4]

5M

|    | UNIT-III                                                                                          |            |           |           |
|----|---------------------------------------------------------------------------------------------------|------------|-----------|-----------|
| 6  | If $z = xy^2 + x^2y$ ; where $x = at^2$ , $y = 2at$ , find $\frac{dz}{dt}$ as a total derivative. | CO3        | L2        | 5M        |
|    | <b>b</b> Examine the function for extreme values                                                  | <b>CO3</b> | L3        | 5M        |
|    | $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2;  (x > 0, y > 0)$                                         |            |           |           |
| _  | OR                                                                                                |            |           |           |
| 7  | a Find a point on the plane $3x+2y+z-12=0$ which is nearest to the origin.                        | CO3        | L3        | 6M        |
|    | <b>b</b> Find curl $\vec{f}$ where $\vec{f} = grad(x^2 + y^2 + z^2 - 3xyz)$                       | <b>CO3</b> | L3        | <b>4M</b> |
|    | UNIT-IV                                                                                           |            |           |           |
| 8  | Examine the following sequences for convergence:                                                  | <b>CO4</b> | L3        | 10M       |
|    | (i) $a_n = \frac{n^2 - 2n}{3n^2 + n}$ and (ii) $a_n = 3 + (-1)^n$                                 |            |           |           |
|    | OR                                                                                                |            |           |           |
| 9  | Discuss the convergence of the series $\sum \frac{1}{\sqrt{n}} \tan \frac{1}{n}$                  | CO4        | L3        | <b>5M</b> |
|    |                                                                                                   |            |           | -         |
|    | Test whether the series converges or diverges $\sum_{n=1}^{\infty} \frac{(2n+3)(2^n+3)}{3^n+2}$   | CO4        | <b>L3</b> | 5N.       |
|    | Test whether the series converges or diverges $\frac{3^n+2}{3^n+2}$                               |            |           |           |
|    | UNIT-V                                                                                            |            |           |           |
| 10 | a Find the Fourier series of the function $f(x) = x^2, -\pi \le x \le \pi$                        | CO5        | <b>L2</b> | 5M        |
|    | <b>b</b> Find the Fourier series of the function $f(x) = e^x, -\pi \le x \le \pi$                 | CO5        | L2        | 5M        |
|    | OR                                                                                                |            |           |           |
| 11 | Find half-range fourier cosine series for $f(x) = (x-1)^2$ in $0 < x < 1$ .                       | CO5        | L3        | 5M        |
|    | <b>b</b> Expand $f(x) = x \cos x$ as a sine series in the interval $0 < x < \pi$                  | CO5        | L3        | 5M        |
|    | white FIRTH white                                                                                 |            |           |           |